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Abstract

Numerical rootfinding problems are quite common in stochastic modeling.
However, many solutions stop at the presentation of a probability generat-
ing function for the state probabilities. But with increasing easy access to
computing power, many problems whose answers were typically left in in-
complete form or for which there has been a search for alternative solution
methods are currently being reexamined. The class of Markov chains with
quasi-triangular layouts (i.e., those having sub- or super-triangular sets of
zeros) are a good case in point. They have an especially nice structure which
leads to a rather concise representation for the generating functions. But the
complete solution then requires the finding of roots. Fortunately, these prob-
lems can be shown to have special properties that make accurate rootfinding
quite feasible. In this paper, we show that the roots of the critical equa-
tions for these models are indeed unique and located in known regions in the
complex plane. .. 4 J
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1 INTRODUCTION

As Abolnikov and Dukhovny (1987) and others (for example, see Bailey, 1954,
and Powell, 1985) have repeatedly noted, many denumerable discrete-time
Markov chains (with particular applications in inventory, dam and queueing
modeling) have one of two special transition-matrix structures. These forms
have been called quasi-triangular by a number of authors, because of the
presence of sub- or super-triangular sets of zeros:

Qoo aor Qo2 ao3
Qo G111 a2 Q13
G0 Q21 Qaz2 axp

QKo QK1 QA2 QK3

A=| a a a; a3
0 a a; a;
0 0 ap
0 0 0 ag
0 0 0 0

and

E}{_l bK_1 bK_2 bK-:’ bo 0 0 0

Yk bg bx_y byx_a ... by by 0O O
B=|Eks1 bk bk bxka .. by by bo O ,

Zk+z briz bknn bk .. by by by bo

where
J
2,‘ = 1 - Z bn.
n=0

The structure of these matrices leads to some particularly concise rep-
resentations for the probability generating functions (PGFs) of the Markov
chain equilibrium state process. When the stationary equation for such a
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Markov chain is exercised, the PGF of the steady-state probabilities has an
algebraic function in its denominator whose roots are critical in the final so-
lution. (We henceforth refer to this denominator function equated to zero as
the system’s characteristic equation).

For the transition matrix A, the charactenistic equation (CE) turns out
to be (at least for complex z with absolute value < 1)

o0
K = Za.-z‘ = afz), (1)
1=0
where K is as defined in the matrix representation A (corresponding, for ex-
ample, to a constant batch-input module in bulk queues). Under the assump-
tion that a(z) possesses all its derivatives at z = 1 (i.e., that the distribution
{a,} bas all moments), a(z) may be set equal to the Laplace-Stieltjes trans-
form of a distribution function [call that A(t), and set its mean to 1/u] of a
nonnegative random variable evaluated at A(1 — z), where A is an arbitrary
positive constant for the time being. Thus we may also write that

K = A1 -2)). (2)

The CE associated with the matrix B may be written as

o = f:b = B(2), 3)

2 = B*(u(l - 2)]. (4)

In these representations, the constant K is as given in B (corresponding,
for example, to a constant batch-service module in bulk queues), B(z) is
defined as the PGF of the probabilities {b,}, and B* is the Laplace-Stieltjes
transform of a distribution function [call that B(t), and set its mean to 1/2] of
a nonnegative random variable evaluated at u(1 — z), where p is an arbitrary
positive constant.

Recognize that Equations (1) and (3) are generalizations of the well-
known fundamental equation of branching processes, typically written as
z = f(z), where f would be the PGF for the number of offspring emanating
from one parent. Gross and Harris (1985), for example, provide the details
of the root problem for this model. In actuality, it is the B problem which
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is in fact the more direct relative of the branching process, so it is this one
on which we comment in detail first.

The CE of the matrix B may be rewritten in the standard way by using
z = rezp(if), and we find that

rEezp(i0K) = B*[u(1 — r exp(18)))ezp(2mni) (5)

forn = 1,2,..., K. This equation clearly has a root at unity, and by Rouché’s
theorem, we can show that there are K others inside the unit circle | z |= 1
when the chain is ergodic. The condition for ergodicity is that

B'(1) = f;nb,. > K

n=0

or

(dB‘[ufilz— Z))]),z, > K.

These can be shown to be equivalent to the requirement that KA/pu < 1. In
addition and most importantly, for each n in (5}, there is a unique root with
absolute value less than 1. We provide the proof of this assertion in the next
section.

The roots of (5) are found by separately solving its real and imaginary
portions. As noted, there is a unique answer when (5) is evaluated for in-
dividual values of n. In Section 2, we use this fact to complete the proof
that these roots are indeed unique. In addition, we are able to pinpoint the
locations of all of the real roots.

Partial results on the uniqueness of all the roots for this model type are
available. It is, in fact, known that the roots are totally unique when B(t) is
Erlang(J) distributed with mean 1/ (see Chaudhry and Templeton, 1983).
In this case, Equation 4 becomes (for KA/u = Kp < 1)

K = (Jp/(Jp+(1 - 2)l’. (6)

To prove that the roots are simple, we show that the derivative vanishes at
a potential repeated root, say z,. This is equivalent to requiring that

I\'Z‘K—l - J(Jp)J[Jp+ (1- z')]—(J-H). M
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If (6) is divided by (7), we see that

, _KUp+1) _ | J1-Kp)
T+ K J+ K

When this value is substituted back into Equation (6), we find that the
condition for repetition is that

(KoY’ = (Jp+ 1)K (5 *¥

or

(Kp)TU*0 = (Jp +1)( )-

J+ K
If we define J/(J + K) as c, then the condition for repetition is equivalent
to requiring that

(Kp)*=(Jp+1)(1-¢c)=(1-¢)Jp+ (1 -c). (8)

The right-hand side of (8) is a straight line in p, with y-intercept of l-c
and slope of (1-c)J, while the left-hand side is a monomial with positive,
fractional power c. The two functions intersect only at p = 1/ K, which would
violate the condition for ergodicity that p < 1/K, so that the assumption of
repetition must be false.

But not much more has been generally known about the effect of the form
of the distribution B(t) for the more general model.

For the A-matrix problem, recall that the characteristic equation is

= A1 - 2)), (9)
where A* is a Laplace-Stieltjes transform. Ergodocity obtains here when
o'(1)=Y na, < K
n=0
or

(dA‘[A;i - Z)]L, K




This is equivalent to requiring that A/Kpu < 1.

It is easily shown by Rouché’s theorem that (9) has K roots inside and
on the unit circle, including the root z=1. Abolnikov and Dukhovny (1987)
have noted that all the roots on the unit circle are, in fact, simple. We show
here that the specific root z=1 is simple using the usual derivative test. To
do so, we evaluate

KzK~1' = —MdA*() - Xz)/dz
at z=1 and find that

K=-X-1/u)=p,

or p = K, which is a contradiction of the ergodic condition that p < K.
Hence z=1 cannot be a double root.

When A(t) 1s deterministic, we can further show that all K-1 roots inside
or on the unit circle are, in fact, strictly within. This follows when we rewrite

(13) as

K = Kolz-1)

and assume that z, has absolute value of 1 but is not precisely equal to 1.
Then we see that

1= er(z.—l),

which implies that Re(z, — 1) = 0 and thus that z, = 1. But this is contrary
to our earlier verification that the root z =1 1s simple.

2 NEW RESULTS
We first show:
Lemma 1 Equation 5 has one and only one root for each n.

Proof: Rewrite (5) as

09— 2T [ [ o-ntt-r ezp(io) e
r ezpli(6 i )] = [/0 e 1dB(t)

5
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Let f(z) equal the left-hand side of the above equation and g(z) equal the
right-hand side, and consider the circle | 2 |= 1 — § = C. On the boundary,
| f(z) |I= C and

|(z) I [ [ 1 emimcemon dB(t)J”K

_ it ~ut(1-Ccos 8—1Can 8 /K
= 1e | dB(t)
0

o0 1/K
- {/ e—p(l—CconO)t dB(t)]
0
since | ezp(—1iCsin ) |= 1. Because cos8 < 1, it then follows that

oo \ 1/K
9(a) 1< [T e-erapw)| T =1
0
We now show that | f(z2) [> I, for then
| f(z) [>T 2>]g(2)].
This is equivalent to showing that
oo 1/K
F(C)=C - [ 7 ermaox dB(t)J > 0.
0
But F(1) =0and F'(1) =1 - u/KA <0. Thus
clinlq_ F(C)>0and F(1 -6)>0.
Hence f(z) + g(z) = 0 has the same number of roots as f(z) = 0 inside
| z |= 1, namely, 1. OO

We know that the B-matrix model has K roots inside the unit circle, and
as promised, we now show that these values are indeed unique.

Theorem 1 The roots of the characteristic equation of the B-matrir model
are unique, with one real root in (0,1) for all values of K and a second real
one 1 (-1,0) only when K is even.




Proof: Use the form 2K = f(z). Then by a geometric argument essen-
tially the same as that for the G/M /1 queue used in Figure 5.1 of Gross and
Harris (1985), it follows that there exists a unique real root in (0,1) for all
K when

B'(1) > [d(z¥)/dz).=y.

But this is equivalent to

£ >K o —<1,
A Iz
which is true from ergodicity.

For K even, we see that there is an additional real root in (-1,0) with a
smaller modulus than the positive root, since z* is a symmetric function and
0 < B(-z) < B(z) for z € (0,1).

From Lemma 1, we know that (5) has a unique root inside the unit circle
for eachn =1, ..., K; call it (r,,0,). But it is also true that (8) has a unique
(possibly non-integer) value, n,, for each pair (r,,6,). Thus if we assume for
t # j that (,,6,) = (r,,8,), it follows that n, = n,. But this contradicts
the uniqueness of (r,8) for each n. Therefore all K roots (r,,8,) must be
distinct. DO

Remember now that the A-matrix models have characteristic equation

2K = A*() =~ Xz2) = a(2). (10)

As noted earlier, this equation has exactly K roots inside or on | 2z |= 1. If
A* is a rational function whose denominator is of degree r, then it clearly
follows that there are » + K roots, with r of them outside the unit circle. For
the queueing version of this problem (that is, the model AM/AMK) /1), r = 1
and there is therefore exactly one root outside the unit circle, which is, in
fact, real. It turns out that all such A-matrix problems have exactly one root
greater than 1 (and therefore have at least one root in the complex domain
outside the unit circle). The proof of this follows.

Theorem 2 The characteristic equation of the A-matriz problem always has
one real root greater than 1. Furthermore, there 1s always an additional real
root in (—1,0) for K even, but not fo. K odd.
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Proof: The verification that there is always a real root in (1, 00) comes
from an analysis virtually identical to that used for the B-matrix problem.
Similar to before, use the probability generating function a(z) as the right-
hand side. Then the first intersection of zX with this pgf occurs at z = 1
whenever a’(1) > 1. In addition, there is a guaranteed later intersection
since the slope of a(z) must eventually exceed that of z¥X at some point.

The existence of a second real root in (—1,0) for K even follows from
the fact that the function a(z) is monotone increasing and z¥ is symmetric.
Thus the intersection must occur at a point with absolute value less than
that of the first intersection on the positive real line, namely, z = 1. OO

3 CONCLUDING REMARKS

Of course, we recognize that the location of roots in the complex plane is only
part of the problem. It remains to develop effective numerical procedures to
take advantage of the information. Our current research is partly devoted to
this development.
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